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Abstract

Causal FIR matrices with anticausal FIR inverses have
a key role in the theory of FIR perfect reconstruction
filter banks. We explore the theory of such matri-
ces. Some general results on nature of inverses of first
order causal FIR matrices are then presented. This
leads, in particular, to a complete parameterization
of the Biorthonormal Lapped Transform (BOLT) re-

ported earlier in [1]. !
1. INTRODUCTION

It is well-known that the M-channel maximally dec-
imated analysis/synthesis system of Fig. 1.1(a) can
be redrawn as in Fig. 1.1(b) where E(z) and R(z2)
are the polyphase matrices of the analysis and synthe-
sis bank respectively. In a recent paper [1] we argued
that the set of all FIR perfect reconstruction {PR) sys-
tems can be essentially characterized by characterizing
all CAusal Fir transfer matrices with AntiCAusal Fir
Inverses, abbreviated cafacafi. In particular, this gave
rise to the so-called BiOrthnormal Lapped Transform,
abbreviated BOLT. Some theorems pertaining to the
factorization of cafacafi systems and BOLT systems,
as well as the most general degree one cafacaf: build-
ing block were presented in [1], along with examples of
unfactorizable cafacafi systems. After a brief review of
the results in [1], we present new results for first order
polyphase matrices, and establish a complete factor-
ization of the BOLT (which was missing in [1]).

1.1. Importance of cafacafi systems

The filter bank in Fig. 1.1 is a perfect reconstruc-
tion (PR) system [i.e., Z(n) = F )] if and only if
R(z) = E7(z z It is an FIR filter bank if both of
the matrices E(z) and R(z) are FIR. So, for an FIR
PR system we should have [det E(z)] = cz7, ¢ # 0.
In fact all FIR PR systems are charactenzed by this
property. Given an arbitrary FIR PR system, if we
define E;(2) = z~7E(z) and R,(z) = 2/R(z) for arbi-
trary I, we have constructed a new FIR PR filter bank.
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The new analysis and synthesis filters are z—/M H,(z)
and z/M F;(z), which means that the frequency char-
acteristics are unchanged. By choosing I large enough
we can make E;(z) causal and its inverse R,(z) anti-
causal. So the class of all FIR PR filter banks can be
characterized by considering the cafacafi class. Unlike
arbitrary FIR systems with FIR inverses, cafacafi sys-
tems have special system-theoretic properties (2], f3]
and generally speaking, are more interesting.

it is shown that the most general degree one cafaca

system has the form GoVy,(2) where

Vm(2) =1~ umvjn + z"lu,..vl,, (1.1)

Gy is nonsingular, and u,, and v,, are M x 1 vec-

tors with u;",,v.,l = 1. (Superscript { stands for trans-
pose conjugate). With um = vm, Vm(2) is the famil-
iar degree-one paraunitary (PU) buxldmg block [4],[5].
It is clear that V(1) = I; it can be shown that
}det Vm(z)] = z7). Inspite of the generality of this
orm, an arbitrary cafacafi system may not be fac-
torizable into these building blocks! An example is

V(z) = uvl + 2711 + z-2uvt ulv = 0, see [3].

1.2. The BOLT
A BOLT is a first order causal FIR system

G(z) = g(0) + z~'g(2), (1.2)

with anticausal FIR inverse. In short, a BOLT is a
M x M first order cafacafi system. Its degree is clearly
equal to the rank of g(1) [35

Recall that the lapped orthogonal transform (LOT)
6], 7], is essentially a filter bank in which the polyphase
matrix E(z%ls paraunitary with order one. This
means that E(z) has the form (1.2), and its inverse is

g't 0)+ zgf(l) which is FIR anticausal! So the BOLT
is a generalization of the LOT; the LOT is paraunitary,
whereas the BOLT merely cafacafi.

It turns out that, while arbitrary cafacafi systems
cannot be factorized, any BOLT can be factorized into
degree one building blocks:

G(2) = G(1)V,(2)Vp-1(2) ... V1(2) (1.3)
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where V1 (2) are as in (1.1) with uj,.vm =1 (Fig. 1.2).
This therefore is a generalization of the paraunitary
factorization {4] for the first order cafacafi case. The
PU factorization, however holds for any order.

Given that each building block V,.(z) is cafacafi,
it is easily verified that the product (1.3) is cafacafi
However, the product in general is not a BOLT, that
is it may not be a first order system as in (1.2). This,
however, can be ensured by imposing further condi-
tions on u; and v;. This result (Sec. 3) will follow
directly from the more general results on first order
systems to be developed in the next section.

2. INVERSES OF FIRST ORDER SYSTEMS

Consider a first order M x M transfer matrix as in
(1.2). We will assume that G(1) = G(e’?) is nonsin-
gular. This is the case, for example, when there exists
an FIR inverse. We can then express G(z) = G(1)F(2)
where F(1) = I. So we can write F(z) =I-P+2"1P
without loss of generality. Let p be the rank of P [i.e.,
p = degree of F(z)] so that we can write

F(z) = I-uvt 4+ z-uvt 2.1)
where U and V are M x p. The type of inverse that F(z)

has depends strongly on the matrix VTL(, in particular
on its eigenvalues. We now present some precise results
on this. Throughout this section F(z) is the M x M
system shown above; U and V are M x p with rank p.

Lemma 2.1. F(z) has an anticausal inverse if and
only if viuis nonsingular. ¢
Proof. A minimal implementation of F$z) is shown

in Fig. 2.1. The state space description of this struc-
ture (with standard notations [5]) is given by A = 0,

B=Vl,Cc=u,and D =1-uV!. Let

RrE [‘é B] = [2 I-vzivT] (2.2)

As shown in [2], R is nonsingular if and only if there
exists an anticausal inverse for F(z). We will show that

R is nonsingular if and only if viu is nonsingular.
Suppose Rx = 0 for some vector x. Then

v’fx2=o, and Ux;+x2=0, with x= [:;]

Combining these we get viux, =o0.1f viu is nonsin-
gular then x; = 0 and so x3 = ~Ux; = 0 from above.
In short, if Rx = 0 then x = 0. So R is nonsingu-

lar. On the other hand, if viuis singular there exists

¥y # 0 such that vay = 0. If we now choose x; = —y
and x; = Uy, then Rx = 0 so R singular. AvAvA v/

Theorem 2.1. The inverse of F(z2) is

1. FIR if and only if all eigenvalues of uvt are re-
stricted to be 0’s and 1’s.

2. FIR and anticausal (i.e., F(z) is cafacafi) if and

only if V! has p of its eigenvalues equal to unity
and the remaining M — p eigenvalues equal to zero.

3. FIR and causal (i.e., F(z) is unimodular in z~!)
if and only if UVt has all eigenvalues = 0. &

Proof. From the unitary triangularization theo-
rem [8] we can write uvt = TAT! where TTt =
I, and A is upper triangular with the eigenvaules
{20, A1...25-1,0,...0} on the diagonals. (Since the
rank is p there could be at most p nonzero eigenvalues).
We can then express F(z) = T(I - A + z71A) T 50
that [det F(z)] = [2Z9 (1 = Ai + z71X;). This has the
form cz—¥ (which is necessary and sufficient for the
existence of FIR inverse) if and only if A; =0 or 1 for
each i. Since deg F(z) = p the FIR inverse is anticausal
if and only if det F(z) = ¢z=” (Theorem 5.3, [2]). This
will be the case if and only if uvt has p eigenvalues
equal to unity (and, of course, the remaining M — p
eigenvalues = 0). Finally the FIR inverse is causal
(i.e., F(z) unimodular) if and only if the determinant
is constant, i.e., A; = 0 for all 1. \vAvAV/

Note. Since UV has rank p it can have at most p
nonzero eigenvalues. But there could be fewer, as in
the extreme example of a triangular matrix with all
diagonal elements equal to zero.

Theorem 2.2. The inverse of the system F(z) de-

pends on the properties of ViU as follows.

1. F(z) has an anticausal inverse if and only if viu
is nonsingular.

2. The inverse of F(z) is FIR if and only if all eigen-
values of V1L are restricted to be 0’s and 1.

3. The inverse of F(z) is FIR and anticausal (i.e.,

‘I,"agz) is cafacafi) if and only if ViU bas all eigen-
ues equal to unity.

4. The inverse of F(z) is FIR and causal (i.e., F(z) is

unimodular) if and only if ViL¢ has all eigenvalues
equal to zero. ¢

Proof. Part 1 is a repetition of Lemma 2.1. Parts
2 and 4 follow from Theorem 2.1 by using the fact
that every nonzero eigenvalue of the matrix PQ is an
eigenvalue of QP (for any P, Q for which PQ and
QP are defined). Part 3 follows by combining parts 1
and 2; indeed, nonsingularity of ViU and the condition
that the eigenvalues be restricted to be ones and zeros
is equivalent to the statement that all the eigenvalues

of VTU are equal to unity. vVvv

Ezample 2.1. The cases where Vi = 1, and ViU =
0 give examples of FIR systems with anticausal and




causal FIR inverses respectively. With F(z) = (I -
wt + z=UVt) we have

Fl(z) = { 1-w vt frviu=1,
1+wvt - z-uvt forVviu=o0
as one can verify by direct multiplication. Notice that

if viu = I, then the inverse is also of first order. So
first order cafacafi systems with higher order inverses
[3] are not covered by this example. Eq. (1.1) is a
special case of F(z) where p=1.

Ezample 2.2. The following example

1 0
010 00
=8 ][8 3 8] vius 8 4]

satisfies part 4 of Theorem 2.2 so that F(z) is unimod-
ular, even though vtu #0.

Ezample 2.9. As a special case consider I-P+z"1P
where P? = P. With p denoting the rank of P, we can
write P = UV!. Now P? = P implies vyt =it
Premultiplying by ut and postmultiplying with V and
using the facts that Uty and V1V are nonsingular we
obtain V1i/ = I. From part 3 of Theorem 2.2 we there-
fore conclude that there exists an anticausal FIR in-

verse for I — P + z7!P, when P2 = P. In fact the
inverse is I — P + 2P, as verified by substitution.

Ezample 2.4. Unimodular system. By a slight
modification of the above theorem we can show that

I+ z-UV! is unimodular if and only if VI has all
eigenvalues equal to zero.

3. COMPLETE PARAMETERIZATION OF BOLT

The BOLT matrix has the form (1.2) and has anti-
causal FIR inverse. Since this implies G(1) is nonsin-

ar, we can write G(z) = G(1)F(z) where F(z) is as
in (2.1). Using Theorem 2.2 (part 3) we can say that
a system G(z) is BOLT if and only if it has the form

G(z)=Gc)I-uvt +z7uvt)y @)

where V1/ has all eigenvalues equal to unity.

In Sec. 1.2 we saw that the BOLT can be factorized
as in (1.3) where V,,(z) is as in (1.1) with viau, =1
and p is the degree of G(z). Conversely an arbitrary
product of the form (1.3) with V,,(z) as above, still
represents a system with anticausal FIR inverse, but
may have order > 1 i.e., it may not be a BOLT. Sup-
pose we impose the further restriction that

0,
"I“*={1, i=k

Then it can be verifed that (1.3) reduces to (3.1) with
the constant matrices V and U given by

V=[v1 Vo Vp], u=[u1 U ... u,,].

(3.3)

Conversely, can we represent any BOLT system as
in (1.3) with the restriction (3.2)? The answer is in the
affirmative: if G(z) is BOLT, this means in particular
that it has an FIR inverse, and so G(1) is nonsingular.
So we can always write a degree p BOLT as in (3.1),
where U and V are M x p matrices with rank p. Now

L(Vf = MTT'r VT for any unitary T, and we can rewrite
uvt = 1! by defining U, = UT and V! = THL.
Note that Vi = THWILT. By proper choice of T
we can ensure that vfu, is a triangular matrix. In
other words, we can assume without loss of general-
ity that V11 is triangular. Since G(z) is cafacafi the

matrix VU has all eigenvalues equal to unity (part 3,
Theorem 2.2), so

1 x x x
01 x x
00 0 ... 1

where x stands for possibly nonzero elements. Now
denote the columns of V and U as in (3:?. Then the
property (3.4) means that (3.2) is satisfied.

Thus we have defined u,,, and v,,, 1 < m < p satis-
fying (3.2). We already know that if such u,, and v,,
are used in (1.3), the result has the form (3.1) with &/
and V given by (3.3). So the given BOLT matrix (3.1)
can indeed be represented as in (1.3), with the vectors
satisfying (3.2). Summarizing, we have:

Theorem 3.1. BOLT Characterization. Consider
an M x M transfer matrix G(z). We say that this
is a BOLT if G(z) = g(0) + z~'g(1), and it has an
anticausal FIR inverse. The following statements are
equivalent:

1. G(z) is a BOLT.

2. G(2) can be factorized as in (1.3) where G(1) is
nonsingular and V,,,(z) are as in (1.1), with the
vectors vx and u; satisfying (3.2).

3. G(z) can be written in the form G(z) = G(1)(I-
uvt + z-luvT), where G(1) is nonsingular and
ViU bas all eigenvalues equal to unity.

4. G(z) can be written in the form G(z) = G(1)(I-
uvt + z-luv'f), where G(1) is nonsingular and
VU has the triangular form (3.4).

Thus if G(z) is BOLT with Vi written in the form
(3.4), the columns of V and U satisfy (3.2), and can be
taken to be the vectors vy, and u,, in the factorization
(1.3). So the factorization is determined simply b

identifying the columns of V and U. 3

Degrees of freedom. The nonsingular matrix
G(1) has M? elements, and the vectors u,vi, have



M elements each, but constrained by (3.2). In the
real coefficient case it can be verified that the M x M
degree-p BOLT has M? + 2pM — 0.5p(p + 1) degrees
of freedom. This should be compared with the LOT
which has 0.5M(M — 1) + pM — 0.5p(p + 1) degrees
of freedom. Traditional transform coding (special case

with V! = 0 and G(1) unitary) has 0.5M(M - 1)
freedoms. The extra freedom offered by the BOLT can
perhaps be exploited to obtain better attenuation for
the analysis filters, or to impose other constraints such
as linear phase, regularity (for wavelet synthesis l.LQ])
and so forth. This requires detailed investigation. Fig.
3.1 shows the magntiude responses of the 8-channel
analysis filters for the BOLT and the LOT, with the
same degree p = 4.
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Fig. 1.1 (a) The maximaliy decimated filter bank, and (b) the
polyphase representation.
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Fig. 2.1. A minimal implementation of (2.1).
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Fig. 3.1. Magni responses of the analysis fiters 1/
for (a) the BOLT and (b) the LOT.
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